濮阳西门子专业授权代理商
现在考虑一个简单情况来比较SNR和NSD,如图1所示。假设ADC时钟频率为75MHz。对输出数据运行快速傅里叶变换(FFT),图中显示的频谱为从直流到37.5 MHz。本例中,目标信号是的大信号,且碰巧位于2MHz附近。对于白噪声(大部分情况下包含量化噪声和热噪声)而言,噪声均匀分布在转换器的奈奎斯特频段内,本例中为直流至37.5MHz。
由于目标信号在直流与4MHz之间,故可相对简单地应用数字后处理以滤除或抛弃一切高于4MHz的频率(仅保留红框中的内容)。这里将需要丢弃7⁄8噪声,保留所有信号能量,从而有效SNR改善9dB。如果知道信号位于频段的一半中,那么事实上可以在仅消除噪声的丢弃另一半频段。
这就引出了一条有用的经验法则:存在白噪声时,调制增益可使过采样信号的SNR额外改善3dB/倍频程。在图1示例中,可将此技巧应用到三个倍频程中(系数为8),从而使SNR改善9 dB。
当然,如果信号处于直流和4MHz之间某处,那么就不需要使用快速75 MSPS ADC来捕捉信号。只需9 MSPS或10MSPS便能满足奈奎斯特采样定理对带宽的要求。事实上,可以对75 MSPS采样数据进行1/8抽取,产生9.375MSPS有效数据速率,保留目标频段内的噪底。
正确进行抽取很重要。如果只是每8个样本丢弃7个,那么噪声会折叠或混叠回到目标频段内,这样将得不到任何SNR改善。必须先滤波再抽取,才能实现调制增益。
即便如此,理想的滤波器会消除一切噪声,实现理想3dB/倍频程的调制增益,但实际滤波器不具备此类特性。在实践中,所需的滤波器阻带抑制量与试图实现多少调制增益成函数关系。应注意,“3dB/倍频程"的经验法则是基于白噪声假设。这是一个合理的假设,但并非适用于一切情况。
一个重要的例外情况是动态范围受非线性误差或通带中的其他杂散交调分量影响。在这些情况下,“滤波并丢弃"方法不一定能滤除杂散分量,可能需要更细致的频率算法。
将SNR和采样速率转换为噪声频谱密度
当频谱中存在多个信号时,比如FM频段内有许多电台,情况会变得愈加复杂。若要恢复任一信号,更重要的不是数据转换器的总噪声,而是落入目标频段内的转换器噪声量。这就需要通过数字滤波和后处理来消除所有带外噪声。
有多种方法可以减少落入红框内的噪声量。其中一种是选择具有更好SNR(噪声更低)的ADC。或者也可以使用相同SNR的ADC并提供更快的时钟(比如150MHz),从而让噪声分布在更宽的带宽内,使红框内的噪声更少。
NSD进入视野
这就提出了一个新问题:如要快速比较转换器滤除噪声的性能,有没有比SNR更好的规格?
此时就会用到噪声频谱密度(NSD)。用频谱密度(通常以相对于每赫兹带宽的满量程的分贝数为单位,即dBFS/Hz)来刻画噪声,便可比较不同采样速率的ADC,从而确定哪个器件在特定应用中可能具有低噪声。
表1以一个70 dBSNR的数据转换器为例,说明随着采样速率从100 MHz提高到2 GHz,NSD有何改善。
表1.改变一个70 dB SNR的ADC的采样速率
表2显示了部分极为不同的转换器的多种SNR和采样速率组合,但所有组合都具有相同的NSD,每一种组合在1MHz通道内都将具有相同的总噪声。注意,转换器的实际分辨率可能远高于有效位数,因为很多转换器希望具有额外的分辨率以确保量化噪声对NSD的影响可忽略不计。
表2.几种极为不同的转换器均在1 MHz带宽内提供95 dBSNR;SNR计算假定为白噪底(无杂散影响)
大家好,大家都知道三相异步电机的转速是分等级的,转速的快慢是由极数决定的,那么下面一起了解一下什么是电机的极数,又是怎么划分的呢。 什么是电机的极数 三相异步电动机“极数”是指定子磁场磁极的个数。定子绕组的连接方式不同,可形成定子磁场的不同极数。选择电动机的极数是由负荷需要的转速来确定的,电动机的极数直接影响电动机的转速。 电动机转速=60f/p也就是60乘以电动机频率除以电动机磁极对数。根据公式我们不难看出级数越多,转速越低,极数越少,转速越高。 三相交流电机每组线圈都会产生N、S磁极,每个电机每相含有的磁极个数就是极数。由于磁极是成对出现的,电机有2、4、6、8„„极之分。在中国,电源频率为50赫兹,2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。绕组的一来一去才能组成回路,也就是磁极对数,是成对出现的,极就是磁极的意思,这些绕组当通过电流时会产生磁场,相应的就会有磁极。电动机的电流只跟电动机的电压、功率有关系。 电动机极数是怎么划分的 两极称为高速电机,四极为中速,六级为低速,大于或等于八极称为超低速。 两级2800-3000转/分钟 四极1400-1500转/分钟 六级900-1000转/分钟 大于或等于八极就低于760转/分钟了。 磁极的识别方法 1、看转速比如1430r/min实际同步转速就是1500转,由转速公式:转速=时间(60秒)×频率(50HZ)除以磁极对数一个磁极对为2个极,由此就可以算出 3000÷1500=2个磁极对 也就是4极电动机。 |
三相异步电动机能耗制动时,切断定子绕组的交流电源后,在定于绕组任意两相通入直流电流形成一固定磁场,与旋转着的转子中的感应电流相互作用产生制动力矩。制动结束必须及时切除直流电源。
图 能耗制动控制电路
控制电路(a):手动控制:停车时按下SB1按钮,制动结束时放开。电路简单,操作不便。
控制电路(b):根据电动机带负载制动过程时间长短设定时间继电器KT的定时值,实现制动过程的自动控制。能耗制动控制电路特点:
制动作用强弱与通入直流电流的大小和电动机的转速有关,在同样的转速下电流越大制动作用越强,电流一定时转速越高制动力矩越大。一般取直流电流为电动机空载电流的3~4倍,过大会使定子过热。
可调节整流器输出端的可变电阻RP,得到合适的制动电流
反接制动是利用改变电动机电源相序,使定子绕组产生的旋转磁场与转子旋转方向产生制动力矩的一种制动方法。应注意的是,当电动机转速接近零时,必须立即断开电源,否则电动机会反向旋转。 由于反接制动电流较大,制动时需在定子回路中串入电阻以限制制动电流。反接制动电阻的接法有两种:对称电阻接法和不对称电阻接法,如下图所示。一般制动电阻采用对称接法,即三相分别串接相同的制动电阻。
图2 电动机单向反接制动控制线路 |
机床工作台自动往复运动示意图
图2 行程开关
正反转自动循环控制电路工作过程:
按下正向起动按钮SB2,接触器KM1得电动作并自锁,电动机正转使工作台前进。运行到SQ2位置,撞块压下SQ2,SQ2常闭触点使KM1断电,SQ2的常开触点使KM2得电动作并自锁,电动机反转使工作台后退。工作台运动左端点撞块压下SQ1时,KM2断电,KM1又得电动作,电动机又正转使工作台前进,这样一直循环。
SB1为停止按钮。SB2与SB3为不同方向的复合起动按钮,改变工作台方向时,不按停止按钮可直接操作。
限位开关SQ3、SQ4限位保护作用:SQ3与SQ4安装在极限位置,由于某种故障,工作台到达SQ1(或SQ2)位置,未能切断KM1(或KM2),工作台将继续移动到极限位置,压下SQ3(或SQ4),此时*终把控制回路断开,使电动机停止,避免工作台由于越出允许位置所导致的事故。
行程控制:用行程开关按照机械运动部件的位置或位置的变化所进行的控制,称作按行程原则的自动控制。